Fame for sale: efficient detection of fake Twitter followers
نویسندگان
چکیده
Fake followers are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere—hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers.
منابع مشابه
CEO's Apology in Twitter: A Case Study of the Fake Beef Labeling Incident by E-Mart
We present a preliminary study on how followers and non-followers of a popular CEO respond differently to a public apology by the CEO in Twitter. Sentiment analysis tool was used to measure the effect of the apology. We find that CEO’s apology had clear benefits in this case. As expected, it was more effective to followers than non-followers. However, followers showed a higher degree of change ...
متن کاملCharacterizing Political Fake News in Twitter by its Meta-Data
This article presents a preliminary approach towards characterizing political fake news on Twitter through the analysis of their meta-data. In particular, we focus on more than 1.5M tweets collected on the day of the election of Donald Trump as 45th president of the United States of America. We use the meta-data embedded within those tweets in order to look for differences between tweets contai...
متن کاملA Power Law Approach to Estimating Fake Social Network Accounts
This paper presents a method to validate the true patrons of a brand, group, artist or any other entity on the social networking site Twitter. We analyze the trend of total number of tweets, average retweets and total number of followers for various nodes for different social and political backgrounds. We argue that average retweets to follower ratio reveals the overall value of the individual ...
متن کاملSpotting Fake Retweeting Activity in Twitter
Given the retweeting activity around the posts of several Twitter users, how can we spot organic users’ reactions from fake retweets that aim to boost a post’s appearance of popularity? Our main intuition is that organic behavior has more variability, while fraudulent behavior is more synchronized. We refer to the detection of such fraudulent activities as the Retweet Fraud problem and propose:...
متن کاملFake Account Detection in Twitter Based on Minimum Weighted Feature set
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Support Systems
دوره 80 شماره
صفحات -
تاریخ انتشار 2015